Showing posts with label GRACE. Show all posts
Showing posts with label GRACE. Show all posts

May 23, 2016

On the total freshwater storage deficit of Ethiopia

As it receives one of the highest rainfall amount in the continent and the region,  Ethiopia is the water tower for the greater horn of Africa and the Nile. Because of its small-holder and traditional based  agrarian economy, but recurrent drought is the main development challenge. In the last decades, hydrologists developed  many drought indexes based on various hydrological and meteorological components like rainfall, evapotranspiration, and runoff to provide indexes for decision making. some of these are: Drought Severity Index (PDSI) (Palmer, 1965), Crop Moisture Index (CMI) (Palmer, 1968), Standardized Precipitation Index (SPI) (McKee et al., 1993), and Surface Water Supply Index (SWSI) (Shafer and Dezman, 1982). There are already  some efforts  to  understand the pattern of rainfall in the region,  mainly from the long term climate change perspective, and the findings are mixed.

The total available freshwater is the residual of all the hydrological fluxes. Hence, it is the integrated indicator of the water budget system of a basin.  On the contrary,  it  is the most difficult component to measure, if obtained with huge efforts, it is very specific and point information. NASA’s Gravity Recovery and Climate Experiment (GRACE) mission (Tapley et al., 2004) provides an independent satellite observation of change of the total water storage. Recently this data has been used to estimate the total water deficit of large basin, and it is evaluated positively. Here, I analyzed GRACE data to understand the total water storage of the Ethiopia. The objectives are:1. to estimate the long term water storage mean at monthly time steps; 2. to estimate the total water deficit of each months ("drought event" if longer than the months ); 3. to calculate the total water status according to the GRACE observation for the last one decade.Here are some results, and hoping to detail the methodology and extend the results in the near future. 

Fig 1: The long term mean monthly total water storage distribution of Ethiopia according to GRACE observation.

Fig 2: the long term monthly mean storage deficit maps of Ethiopia as observed from GRACE
Fig: Time series storage deficit (below zero ) at national level . At national scale, the water storage over the long term trend is more or less at constant level
 Fig 4: the time series storage deficit at four location in the country 


To be continued…..

References 
Palmer, W.C. Meteorological Drought; U.S. Department of Commerce, Weather Bureau: Washington, DC, USA, 1965. 

Shafer, B.A.; Dezman, L. Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff Areas. In Proceedings of the Western Snow Conference, Reno, NV, USA, 19–23 April 1982. 

McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Anaheim, CA, Boston, MA, 17–22 January, pp. 179–184.

Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins (2004), GRACE measurements of mass variability in the Earth system, Science, 305(5683), 503–505, doi:10.1126/science.1099192.

Dec 26, 2015

GRACE for total water storage estimation

GRACE is a remote sensing of water storage based on gravity field. The two twin NASA's Gravity Recovery and Climate Experiment (GRACE) mission detect the gravitational field of the Earth surface. Since the effect of land mass (or large body) in the change of gravitational field is small, and slow, the main change is due to the change in water mass. The terrestrial water has a mass, and always in motion. So measuring the time varying gravitational field is measuring the total water storage of the earth. This gives the hydrologist unprecedented chance to see and understand how much they are able to close the water budget modelling.  Since  the total water storage (TWS) is the main sources of water for use, and it the aggregated values of the water fluxes, the GRACE data will help the water resource managers and policy planners  to be very proactive.  

Recently, I have been starting to explore this dataset if it is possible to use in basin hydrological modelling. While I will come back to the results of the study in the future, here is the GRACE map of Ethiopia for some years (2002-2008) at monthly time steps. I presented the map in animation below. It is estimated at zonal level. Note that the unit is cm.   



Aug 4, 2015

Quantifying groundwater or terrestrial water storage using GRACE

The use of GRACE data for hydrological models to quantify the terrestrial water balance is a way to approach the large body of unknown knowledge of the water storage function. While the use of models and meteorological data helps to estimate most of the water balance components with some reasonable confidence, the quantification of the storage is very difficult, and such supporting data is clearly improve the estimations particularly in large basins. Sooner or later, in the line of water balance estimation at large scale basin, the use of GRACE will be my research agenda. I came across to this paper which shows some approach how to include the GRACE data in the basin water balance modelling.   The abstract reads as:

"Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world’s 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying groundwater use based on nationally reported groundwater withdrawal statistics is compared to a novel approach to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress, Human-dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or negative) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely populated biome types with limited cropland. GRACE-based estimates of use and stress can holistically quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more variability of stress between regions."

some references (to be updated ):

Van Dijk, A. I. J. M., L. J. Renzullo, and M. Rodell. "Use of GRACE terrestrial water storage retrievals to evaluate model estimates by the Australian water resources assessment system." Water Resour. Res 47 (2011): W11524.
Kirk Zmijewski and Richard Becker, 2014: Estimating the Effects of Anthropogenic Modification on Water Balance in the Aral Sea Watershed Using GRACE: 2003–12. Earth Interact.18, 1–16. doi: http://dx.doi.org/10.1175/2013EI000537.1
van Dijk, A. I. J. M., et al. "A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble." (2014).
Eunjin Han, Wade T. Crow, Christopher R. Hain, and Martha C. Anderson, 2015: On the Use of a Water Balance to Evaluate Interannual Terrestrial ET Variability. J. Hydrometeor16, 1102–1108. doi: http://dx.doi.org/10.1175/JHM-D-14-0175.1
Scanlon, B. R., L. Longuevergne, and D. Long (2012), Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA, Water Resour. Res., 48, W04520, doi:10.1029/2011WR011312.